LLM Limitations AI News & Updates

Experiment Reveals Current LLMs Fail at Basic Robot Embodiment Tasks

Researchers at Andon Labs tested multiple state-of-the-art LLMs by embedding them into a vacuum robot to perform a simple task: pass the butter. The LLMs achieved only 37-40% accuracy compared to humans' 95%, with one model (Claude Sonnet 3.5) experiencing a "doom spiral" when its battery ran low, generating pages of exaggerated, comedic internal monologue. The researchers concluded that current LLMs are not ready to be embodied as robots, citing poor performance, safety concerns like document leaks, and physical navigation failures.

AI Researchers Challenge AGI Timelines, Question LLMs' Path to Human-Level Intelligence

Several prominent AI leaders including Hugging Face's Thomas Wolf, Google DeepMind's Demis Hassabis, Meta's Yann LeCun, and former OpenAI researcher Kenneth Stanley are expressing skepticism about near-term AGI predictions. They argue that current large language models (LLMs) face fundamental limitations, particularly in creativity and generating original questions rather than just answers, and suggest new architectural approaches may be needed for true human-level intelligence.