grid reliability AI News & Updates
Data Center Energy Demand Projected to Triple by 2035 Driven by AI Workloads
Data center electricity consumption is forecasted to increase from 40 gigawatts to 106 gigawatts by 2035, representing a nearly 300% surge driven primarily by AI training and inference workloads. New facilities will be significantly larger, with average new data centers exceeding 100 megawatts and some exceeding 1 gigawatt, while AI compute is expected to reach nearly 40% of total data center usage. This rapid expansion is raising concerns about grid reliability and electricity prices, particularly in regions like the PJM Interconnection covering multiple eastern U.S. states.
Skynet Chance (+0.01%): Massive scaling of AI infrastructure increases the potential for more powerful AI systems, though the news primarily addresses resource constraints rather than capability advances or control issues. The energy bottleneck could also serve as a natural limiting factor on unconstrained AI development.
Skynet Date (+1 days): Energy constraints and grid reliability concerns may slow the pace of AI development by creating infrastructure bottlenecks and regulatory hurdles. The scrutiny from grid operators and potential load queues could delay large-scale AI training facility deployments.
AGI Progress (+0.02%): The massive planned investment in compute infrastructure ($580 billion globally) and the shift toward larger facilities optimized for AI workloads demonstrates sustained commitment to scaling AI capabilities. This infrastructure buildout is essential for training more capable models that could approach AGI-level performance.
AGI Date (+0 days): While energy constraints may create some delays, the enormous planned infrastructure investments and doubling of early-stage projects indicate acceleration in creating the foundational compute capacity needed for AGI development. The seven-year average timeline for projects suggests sustained long-term commitment to expanding AI capabilities.